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Executive Summary

Statement of objectives

The research carried out under this grant concerned the development of improved diagnostic, mod-
eling and control techniques. The techniques are built upon observational data and are tailored
to the problem at hand. The models used are global discrete time mappings, ordinary and partial
differential equations.

A major effort during the program was an examination of observability and detectability for
nonlinear dynamical systems. The focus was on developing methods for designing coupling that
guarantee observability or detectability between plant and model. Our results are analytical and
can be used to estimate the complete state of a nonlinear system from limited measurements.

A second major effort concerned the development of symbolic time series methods for estimation
of correlation timescales and/or detection of periodicities in complex signals. This technique shows
particular promise in high-noise situations, where it had previously been shown to be capable of
robust parameter estimation.

A third major effort concerned the development of scaling laws for non-normal transitions. Such
transitions might occur in shear flows or in aeroelastic applications and would be particularly difficult
to control or avoid. A theoretical understanding of the scaling laws is necessary before one can
distinguish such transitions from more standard cases.

Methods employed

The methods used, and results from, the observability /detectability work are primarily analytical.
They do not assume a particular form for the model plant or the coupling, and they can be used
when the dynamics of the plant exhibits complex nonlinear motion. Although our published results
employ linearization about particular measures of dynamics, subsequent work indicates that a full
nonlinear analysis will yield the same observability/detectability criteria. The methods explicitly
employ a measure which represents the dynamics. This sensitivity to the measure is inherent to all
observer problems and can not be avoided. However, our methods and results have their simplest
analytic form on the most unstable measures. Thus, the most important measures are the easiest
to evaluate. The methods yield rigorous observability /detectability results. Because they are based
on norms these results are sufficient, but not necessary.

Significance of the proposed activity

The proposed research will significantly enhance the ability to detect, model and control the dy-
namics of low-dimensional nonlinear systems using observed time series data. The observers and
detectors that arise from the methods can estimate the full state of a nonlinear plant even when
it exhibits complicated nonlinear motion. Thus, full state control algorithms can be used even
when the measurements consist of scalar time series. The approach used comprehensive and can be
implemented using experimentally obtained data from a diverse group of sources.
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. C. RESEARCH OBJECTIVES

The goal of this research program is the development of new robust algorithms for diagnosing,
modeling, and controlling nonlinear systems that have only a few degrees of freedom. (In this
context the number of degrees of freedom is equal to the number of independent variables needed
to accurately model the system which generated the data.) While systems with a few degrees of
freedom have been the focus of the research, an important result is that some of the techniques are
also applicable to distributed parameter systems exhibiting complicated spatio-temporal dynamics.
Such systems are typically modeled as partial differential equations and, in principle, have an infinite
number of degrees of freedom.

Time-series data, in conjunction with whatever a prioriinformation is known about the system, are
used as input to the modeling process. These methods are robust to uncertainties in the models, and
to the presence of noise [1-5]. These techniques have been successfully applied to data from chemical
reactions, electronic circuits, and mechanical systems [1]. Other researchers are also beginning to
apply these methods to experimental data [6-8].

D. BACKGROUND

1. Observers, detectors, and synchronization

Observers and detectors are often used to estimate the full state of a system given time series
measurements. In most examples the plants and observers are linear. Here, we permit both to be
nonlinear, and we assume the uncontrolled dynamics of the plant may be complicated. The approach
couples the dynamics of a nonlinear plant to an observer via drive-response coupling

dx
= = F(x)
Y —F(yit)—E-(y ) )

where x € IR? represents the dynamics of the plant and y € IR? represents the dynamics of the
observer. Here we ignore modeling errors, having examined these issues in a previous paper [9] (see
also new results [10]). The coupling, E, is a vector function of its argument with E(0) = 0. For
this work evaluating E does not necessarily require all components of x. Because the models are
deterministic we know that if y = x at any ¢t = ¢, then y = x for all ¢t > ¢,. Thus, if one can
determine E such that limy . |y — x| = 0 then one can estimate, x, the complete state of the plant
by X =y.

Within the dynamical systems community this area of research is called synchronization. The
dynamics of Egs. (1) is said to be synchronized if x = y. Within this community one says that
X =y is an invariant manifold for the full dynamics, and one is interested in the existence and
stability of dynamics on this manifold.

2. Symbolic time series analysis

Recent work by us [4,5,11] has shown that it is possible to convert an analog signal into a binary
string while still retaining much of the dynamical information present in the signal. It is possible
to do reliable parameter estimation, even in the presence of noise, and to detect periodic behavior
masked either by noise or a chaotic signal. The primary advantages of this approach over more
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traditional techniques are ‘that it is robust to noise and runs fast in real time. Under the recently
ended grant (for which this is the final report) we concentrated upon developing the means to
extract correlation timescale estimates and detection of weak periodic signals. Future extensions
include analysis of weakly non-stationary signals and spatio-temporal pattern analysis.

3. Shear flow instabilities and non-normal dynamics

Consider the transition from laminar to turbulent flow in a fluid. A fluid has an infinite number
of degrees of freedom, but there is ample experimental evidence to suggest that near transition
only a few degrees of freedom play a role (see, e.g. [12,13] for some recent discussions). Physical
intuition suggests that these degrees of freedom might be related to those modes which a linear
analysis identifies as the most unstable just after transition, or those most weakly damped just prior
to transition. Extending this to a fully nonlinear treatment is difficult, but is embodied in the center
manifold theorem which asserts that at transition, assuming there are no unstable degrees of freedom,
the long time behavior will be dominated by those degrees of freedom which are neutrally stable. In
many cases this center manifold can be constructed explicitly by performing a Galerkin projection
on the primitive equations leading to low-dimensional models [14,13]. Alternatively, low-dimensional
models can be constructed directly from the time series. The work of [13] on transitional shear flows
is an impressive example of work that combines elements of both approaches.

In some instances the flow goes unstable at a Reynolds’ number which is far below that predicted
by linear theory. A conjecture dating back to Orr [15] suggests that this is due to the fact that the
linearized Navier-Stokes’ operator is non-normal. In some case this leads to transient amplification
of perturbations even though the system is stable at long times. This conjecture has been revived
in recent years and led to a lively debate in the literature (see [16-20] for the ‘pro’ camp and
[21] for the ‘con’). In our work [22,23] we have examined the claim of [19] that non-normal systems
exhibit anomalous scaling behavior. Such anomalous scaling behavior might provide an experimental
signature which would distinguish these transitions from normal ones.

If such transitions occur in applications they would be extremely dangerous as they would be hard
to control and extremely sensitive to perturbations.

E. NEW RESULTS

1. Synchronization and the observer problem

The major new result of this portion of the research program is a rigorous criteria which, if
satisfied, guarantees that the invariant manifold given by x = y is linearly stable. More importantly,
the criteria can be used to design couplings, E, which satisfy the criteria. The criteria only uses
knowledge of the uncoupled dynamics, F, and many of the important calculations can be performed
analytically [3].

Given the following optimal decomposition [3]

A = (DF) — DE(0), (2)
(where DF and DE are Jacobians) the criteria for linear stability of the manifold x = y is [3]
~R[A] > (|[P~ [DF(x) — (DF)] P[]}, 3)

where A; is the eigenvalue of A that has the largest real part, R[A] is the real part of A, and P
is a matrix composed of the eigenvectors of A. Here (o) denotes a time average along the driving
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trajectory, x. The driving trajectory is one measure of the dynamics of the plant, and each possible
driving trajectory may represents a different measure of the plant. Similar results by others lead us
to conjecture that the criteria in Eqgs. (3) can be obtained from a full nonlinear analysis [24].

Equations (2) and (3) represent definitions and criteria indicating when synchronous motion for a
particular driving trajectory becomes unstable to small perturbations in directions transverse to the
synchronization manifold. The criterion is rigorous and sufficient. However, because it is based on
norms 1t is not necessary.

Because the integral in Eq. (3) is positive semi-definite the inequality can not be satisfied unless
R[A1] < 0. This condition is reminiscent of the discussion of stability of linear systems and Frozen
coefficient analysis [25]. In addition, we have shown that the criteria for linear stability is R[A;] < 0
up to second order in x —y [3].

The stability criteria depends explicitly on the measure of the driving trajectory. Work by many
authors indicates that the most unstable trajectories are likely to be those associated with fixed points
of F and unstable periodic orbits of F with the shortest periods [26-29]. Given these observations
it is believed that, if these trajectories are stable then the manifold x = y is stable for all x [3].

Equation (3) has a geometrical interpretation that can be used to design couplings that yield
stable synchronous motion. Both sides of Eq. (3) are functions of the elements of DE(0). Thus,
<||P"l [DF(x) — (DF)] P||> = const. = C) defines, ¥y, a family of surfaces in the parameter space of
the elements of DE(0). In the same parameter space —R[A;] = const. = C, defines, ©,, a different
family of surfaces. Therefore, the boundary of that portion of parameter space that yields linearly

stable synchronous motion is the intersection of the family of surfaces ¥y with the family of surfaces
Ya. This approach is analytically shown in our manuscripts [3].

2. Anomalous scaling in non-normal transitions

Building on the work of [19], in [22] we consider the question of how non-normal bifurcations might
be observed by developing scaling laws relating the size of finite amplitude perturbations (o.) which
can drive a degenerate node nonlinearly unstable (i.e. we estimate the subcritical threshold). We

also examined the effects of steady-state noise [23]. If € is the bifurcation parameter (with ¢ = 0 the
linear threshold) then we are able to show that

o, ~ € » (4)

withy = N—~1+ N/(n~—1). Here N is the number of degrees of freedom approaching threshold and
n is the order of the dominant nonlinearity. Fig. 1 shows that this scaling laws holds to a high degree
of accuracy. The important point to notice is the exponential dependence on the number of degrees
of freedom which are at threshold. Numerical studies have shown that if the exact degeneracy is
weakly broken the scaling still holds. This suggests that non-normal transitions with only a handful
of modes taking part can go unstable with little warning as the threshold is approached.

In most applications, of course, the dynamics on the center manifold is not isolated from the other
degrees of freedom (which are damped but can be excited by external perturbations or noise). The
hope is that these effects are weak and can be modeled stochastically. Such noise effects will cause
fluctuations in the low-dimensional behavior.

To our knowledge there has been no work done on the noise response of such nonlinear systems
(private communication, K. Lindenberg and G. Weiss). As might be guessed, non-normal systems
are especially sensitive to noise. The most important such effect is noise-driven escape from the
vicinity of the fixed point. A more familiar analogous behavior is escape from a metastable potential
well. Although the fixed point is locally stable, the noise allows the system to explore the local region
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FIG. 1. Results of numerical tests of the scaling law 4. The notation is explained in the text.

FIG. 2. Results of numerical tests of the dependence of the escape time, T on both noise level, ¢ and number of degenerate
degrees of freedom, N.

and, if the noise is large enough, it can cross the separatrix boundary. For applications one should
know how the average escape time, 7, scales with various parameters such as the noise level, o, and
the number of degrees of freedom approaching threshold, N. This was explored numerically (see
Fig. 2) and the results used to develop a scaling theory which explains all the important features [23]

3. Search for low-dimensional behavior in ABLE-ACE data

Recently, Jorgenson et. al. [30] claimed to find evidence of low-dimensional behavior in scintillation
patterns associated with stellar observations. If substantiated this could lead to improved short-term
predictability for adaptive optics applications. Efforts focussed on examining data sets supplied by
Dr. Don Washburn of Phillips Lab taken during the ABLE-ACE campaign. This data was being

subjected to a battery of tests designed to search for low-dimensional behavior in ABLE-ACE data.
No evidence for such behavior was found.

F. ACCOMPLISHMENTS AND NEW FINDINGS

The primary accomplishments of the grant period (4/1/97 - 12/31/97) are:
1. Observability /Detectability




o A rigorous sufficiént criteria has been derived which guarantees linearly stable synchroniza-
tion between dynamical systems when they are coupled in a drive-response manner. This
result is an analytic method for constructing observers/detectors and for estimating the
full state of a nonlinear plant from time series measurements [3].

2. Use of purely symbolic methods to extract correlation timescale estimates and to detect weak
periodicities [11].

3. Anamolous scaling behavior in shear flow instabilities

* An asymptotic estimate was developed for the threshold for nonlinear instability when the
linearized dynamics is non-diagonalizable (i.e. strongly non-normal) [22]. This explains the
anomalous threshold scaling observed numerically by Baggett and Trefethen.

 Numerical studies were performed of noise-driven escape in non-normal systems. Relevant
scaling laws and threshold estimates were extracted and explained [23)].

4. We developed software to implement new diagnostic techniques which detect low-dimensional
deterministic behavior. These diagnostics were applied to ABLE-ACE scintillation data. Our
results suggest that, at least for the one data set examined, scintillation is fully ‘turbulent’ and
probably not low-dimensional chaotic. Testing on at least a few more data sets will be necessary
before a firm conclusions about low-dimensionality of scintillation data can be made.
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